Research in this area focuses on materials for hard tissue replacement and generally engaged in an eminently structural function. These tasks include both mechanical characterization, microstructural and chemical fabrics and materials and the development of new materials and bioactive surfaces.
Development of biomaterials for tissue and organs regeneration/functional repair. It requires the design of materials able to modulate the response of the desired tissue leading, in some cases, to the regeneration and formation of the degraded tissues, or to the perfect integration of the biomaterial and the recovery of the lost functionality.
- Injectable calcium phosphates for bone replacement and regeneration
- Metallurgy and coatings
- Shape memory alloys (low elastic modulus alloys for the manufacture of implants and prostheses)
- New biomaterials from biodegradable compounds for bone regeneration
- Bioactive surfaces on titanium and its alloys
- Cell bioengineering
- Cell cultures
- Biodegradable scaffolds
- Surface characterization
PROYECTOS RELACIONADOS
- The adoption of 6G applications will have a positive impact on a broad range of innovations set to transform our society in the future. These include autonomous vehicles that reduce accidents, more efficient emergency services, and connected drones that expedite the delivery of medical supplies between healthcare centres, to name a few examples. These and other emerging solutions continue to evolve, driven by the constant technological advancements in communications. The implementation of these new technologies requires a process that inevitably involves testing in environments as true to real-life conditions as possible.
- The European project LIFE Biogasnet, coordinated by the Biological Treatment of Gaseous Contaminants and Odours Group (BIOGAP) at the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), has validated a new biogas purification technology that improves the quality of this resource, produced in urban solid waste treatment plants and wastewater treatment facilities, while reducing the carbon footprint, thus promoting the concept of a circular economy. The new solution is based on efficient, low-cost biological technologies, combining a biotrickling filter with a nitrification bioreactor.
- As part of the USEFUL project, the Centre for Sensor, Instrumentation and Systems Development (CD6) at the Universitat Politècnica de Catalunya - BarcelonaTech (UPC) has equipped a low-emission vehicle that will drive through the streets of Terrassa with optical sensors integrated into a complex system for data computing, visualisation, and storage. This car will collect and store thousands of anonymous driving data points, which will be used to develop more accurate algorithms for autonomous driving.
- The Remote Sensing Acquisition Systems Development Centre (SARTI UPC) has developed a new model of buoys to record ocean currents and temperatures as part of the European project Multi-Sensor Extra Light Oceanography Apparatus (MELOA). This is a DRIFTER, or a low-cost, low-power surface drifting buoy, which is easy to use, impact-resistant, multi-purpose, multi-sensorial, and very lightweight. It is designed to be used in all aquatic environments, from the deep sea to inland waters, including coastal areas, river plumes, and wave-breaking zones.