TECHNOLOGICAL CAPABILITIES
INORGANIC CHEMISTRY
Construction
- Sustainable cement based on clinkers with low energy requirements and fly ash.
- High performance cement with low-impact internal curing agents and self-sealing.
- Photocatalytic, self-cleaning cement with TiO2 based on waste of opaque PET and recycled glass for façade cladding.
- Sustainable construction materials based on agricultural byproducts and fibres recovered from textile waste.
Sensorics
- Networks of low-cost, small sensors for monitoring NH3 in stables and reducing the smell in nearby populations.
- Sensorics to detect pollution in the environment. Measurement of levels of methane in gas pipelines.
ORGANIC CHEMISTRY
Organic chemistry
- Bio-based foams and polymer insulation materials (polyol foams, natural cellulose fibres and nanocrystals) for buildings and vehicles.
- Agents that repel water and oil that are non-fluoridated for the textile industry.
- Encapsulation and sequential release of aromas with changes in flavour.
- Bio-based flame retardants for environmentally friendly plastics instead of halogenated compounds.
- New natural biodegradable polymers (PHAs) based on mixed microbial cultures with applications in industry and medicine.
- Development of biodegradable polymers.
Functionalised materials
- New materials and multi-materials for additive manufacturing that improve productivity (functional parts, finishes and post-processes).
- Obtaining nano surfaces and functional microstructures in injected polymer parts.
HEALTH
Biomaterials
- Antibacterial and osteoinductive coatings.
- Surgical meshes that can interact as a smart material with biological tissues.
- Implantable and absorbable sensors for pressure, temperature and acidity.
Pharmaceutical chemistry
- Highly sensitive technology to detect viral infections in the blood.
- Functionalised hydrogels with nanoparticles.
- New polymer materials for drug release.
- Design of new biodegradable polymer systems with bactericide, antioxidant and anticarcinogenic properties.
- Manufacture by ultrasound of coatings with antimicrobial nanoparticles on the surface of special hospital textiles, water treatment membranes, implantable medical devices, etc.
CIRCULAR ECONOMY AND ENVIRONMENT
Circular economy
- Methods and tools to integrate circular systems in the process industry.
- Recovery of added value waste from the copper industry (Bi/Sb) and elimination of As in the mineral phase.
- Recycling of opaque PET for high added value applications.
- New materials and coatings to mitigate abrasive wear and deterioration caused by corrosion.
- Treatment of effluent from textile industries through a new electrochemical alkaline system for hydrogen production.
- Development of lightweight, high-performance biocompounds that are recyclable.
- Water treatment, recovery of valuable metals and minerals from brines from desalination plants.
- Obtaining bioproducts and bioenergy from cyanobacterial activity on waste from urban wastewater, the food industry and others.
- Recovery of metals through reactive crystallisation, selective membrane separation and selective sorption/desorption from brine.
- Thermosensitive hydrogels for desalination and purification of water.
- Recovery of rare earth and metal elements from:
- E-waste and lithium-ion batteries
- Liquid defluent from hydrometallurgical and mining processes
- High added value polymers from recycled, devulcanized elastomers.
Management of emergencies
- 3D models for assessing the spread of fires, adverse weather or the dispersal of pollution.
- Virtual reality in 3D, real volumes and dynamics of computational fluids to measure the radiative transfer and improve the monitoring of fires.
- Protocols for the population and for the emergency services in hazardous situations.
Packaging
- Bioplastics for sustainable packaging based on polylactic acid (PLA) and polyhydroxyalkanoates (PHA).
- Edible food packaging based on materials from renewable sources that are biodegradable and safe and can protect foods and increase their useful life.
- Highly crystalline, degradable polyesters and polyurethanes for the manufacture of environmentally friendly containers.
The environment
- Wastewater filtration systems from aquaculture to retain emerging pollutants (antibiotics).
- Antimicrobial agents of marine origin to reduce the use of conventional food supplements for fish and animals.
- Identification of sources of greenhouse gases using radon as a tracer.
- Microencapsulation with biodegradable polymers to avoid the release of microplastics in the process of domestic cleaning with fabric conditioners.
CHEMICAL AND LABORATORY PROCESSES
- Ecoblends of high added value to optimise additive manufacture.
- Production of ethanol in an ecological, selective way based on CO2 and methane through a hydroxyapatite catalyst.
- Management of highly active nuclear waste: dissolution of fission products and actinides in nuclear fuel
- Transformation of low-quality residual heat into electricity due to conversion processes, transport and use of energy
- Catalyst to produce hydrogen through reforming of a renewable substrate.
- Bimetal catalysts for processes of production of blue and green hydrogen.
APPLICATION SECTORS
FOOD
AGRICULTURE AND MARINE ENVIRONMENT
ENERGY
HEALTH
TEXTILES
BIOTECHNOLOGY
RELATED PROJECTS
- Microalgae-based wastewater treatment systems have demonstrated the ability to recover nutrients from wastewater and produce valuable biomass for agricultural applications while also recovering energy through the anaerobic digestion of residual biomass. In the Cyan2Bio project, in which the Group of Environmental Engineering and Microbiology (GEMMA) of the Universitat Politècnica de Catalunya - BarcelonaTech (UPC) is participating, an additional step will be taken in the valorisation of microalgae biomass to obtain biopolymers suitable for transformation into bioplastics alongside pigments, thereby replacing fossil-based materials.
- Neurodegenerative diseases, such as Parkinson's disease, Alzheimer's, and age-related disorders, have been widely studied due to their significant impact on individuals and society. So far, these are incurable and debilitating diseases that lead to progressive degeneration and death of nerve cells, resulting in cognitive and mobility impairments. Tremors, mainly at rest, slowness of movement (bradykinesia), limb rigidity, and issues with gait and balance are typical motor disorders related to Parkinson’s disease. Additionally, due to progressive muscle atrophy, these issues can lead to falls, which in turn result in further complications and risks to quality of life.
- The energy transition is reshaping the foundations of the power grid, driven by the massive deployment of renewable generation based on power electronics and the gradual disconnection of conventional fossil-based generation. In this context, grid operators will require support systems to provide flexibility, as renewable generation is highly variable.
- The Biological Treatment of Gaseous Pollutants and Odours Group (BIOGAP) at UPC is participating in the BIOMETCRI project, which aims to implement an innovative biotechnological process to recycle batteries from electric and hybrid vehicles, recovering valuable metals such as cobalt, lithium, nickel, and manganese.